Abstract

Insulin sensitivity, glucose effectiveness, and endogenous glucose production (EGP) during stable-labeled, frequently sampled insulin-modified intravenous glucose tolerance test (FSIGT) were evaluated by a single-and two-compartment minimal model combined with nonparametric deconvolution in eleven nonobese Japanese type 2 diabetic patients. Four patients were treated with sulfonylureas, and the remaining seven with diet therapy alone. None had diabetic retinopathy and microalbuminuria. Their fasting glucose level was 117+/-7 mg/dl (mean +/- SE), and HbA1c was 6.6+/-0.3%. Age-, sex-, and BMI-matched subjects with normal glucose tolerance served as control subjects. Plasma insulin response to the stimuli and insulin sensitivity indexes (S(I), S(I)*, and S(I)2* were derived from a minimal model and single- and two-compartment-labeled minimal models) were impaired in the type 2 diabetic patients. The combined ability of glucose, per se, to increase its own uptake and suppress EGP (glucose effectiveness [SG]), which was derived from kinetic analysis of plasma glucose by a minimal model, was significantly lower in the type 2 diabetic patients (0.0132+/-0.0015 vs. 0.0203+/-0.0022; P<0.05). However, the ability of glucose, per se, to stimulate glucose uptake, assessed as S(G)* and S(G)2* from the kinetic analysis of labeled glucose by single- and two-compartment minimal model, was not impaired in those patients. EGP of the type 2 diabetic patients as a whole was suppressed to the level similar to that of the control subjects despite a higher plasma glucose level throughout FSIGT. When EGP in the diabetic subjects was analyzed, considering their recent glycemic control, the initial suppression was blunted in the patients with higher HbA1c levels. In conclusion, glucose mass action to stimulate glucose uptake remains near-normal in the lean Japanese type 2 diabetic patients of this study, whereas ability of glucose to suppress EGP is impaired in the patients with recent hyperglycemia. This blunted suppression of EGP might be one of the conspirators for decreased S(G) in subjects with type 2 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.