Abstract

The development of adiposity in the bone marrow, known as marrow adipose tissue (MAT), is often associated with musculoskeletal frailty. Glucocorticoids, which are a key component of the biological response to stress, affect both bone and MAT. These molecules signal through receptors such as the glucocorticoid receptor (GR), but the role of the GR in regulation of MAT is not yet clear from previous studies. The purpose of this review is to establish and determine the role of GR-mediated signaling in marrow adiposity by comparing and contrasting what is known against other energy-storing tissues like adipose tissue, liver, and muscle, to provide better insight into the regulation of MAT during times of metabolic stress (e.g., dietary challenges, aging). GR-mediated glucocorticoid signaling is critical for proper storage and utilization of lipids in cells such as adipocytes and hepatocytes and proteolysis in muscle, impacting whole-body composition, energy utilization, and homeostasis through a complex network of tissue cross talk between these systems. Loss of GR signaling in bone promotes increased MAT and decreased bone mass. GR-mediated signaling in the liver, adipose tissue, and muscle is critical for whole-body energy and metabolic homeostasis, and both similarities and differences in GR-mediated GC signaling in MAT as compared with these tissues are readily apparent. It is clear that GC-induced pathways work together through these tissues to affect systemic biology, and understanding the role of bone in these patterns of tissue cross talk may lead to a better understanding of MAT-bone biology that improves treatment strategies for frailty-associated diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.