Abstract

Artesunate (ASA) acts as an •O₂- source through the breakdown of endoperoxide bridges catalyzed by Fe2+, yet its efficacy in ASA-based nanodrugs is limited by poor intracellular delivery. ASA-hyaluronic acid (HA) conjugates were formed from hydrophobic ASA and hydrophilic HA by an esterification reaction first, and then self-targeting nanomicelles (NM) were developed using the fact that the amphiphilic conjugates of ASA and HA are capable of self-assembling in aqueous environments. These ASA-HA NMs utilize CD44 receptor-mediated transcytosis to greatly enhance uptake by breast cancer cells. Subsequently, endogenous Fe2+ from the tumor catalyzes the released ASA to produce highly toxic •O₂- radicals to kill tumor cells, although sustained tumor growth inhibition can be achieved via invivo experiments. Self-targeting NMs represent a promising strategy for enhancing ASA-based treatments, leveraging clinically approved drugs to expedite drug development and clinical research in oncology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.