Abstract

To study whether endogenous endothelial progenitor cells (EPCs) are involved in neovascularization after stroke. Animal stroke models were established by subjecting male SD rats to permanent middle cerebral artery occlusion (pMCAO). Vessels in ischemic boundary zone (IBZ) were stained with antibody against laminin at 1 to 21 days after pMCAO. EPCs and newly formed vessels were identified by staining with special markers. After inhibiting recruitment of EPCs with AMD3100, a CXCR4 antagonist, endogenous EPCs, capillary density, cerebral blood flow (CBF) in IBZ, and neurobehavioral functions were assessed by staining, FITC-dextran, laser-Doppler perfusion monitor, and neurologic severity score. After pMCAO, vessels were found in IBZ at day 3, reaching a peak at day 14. The change in number of laminin-positive cells showed a similar pattern with that of vessels. Apart from few endothelial cells, most of laminin-positive cells were endogenous EPCs. After treatment with AMD3100, the number of endogenous EPCs, capillary density, and CBF in IBZ were significantly reduced, and neurobehavioral functions were worse as compared with the normal saline group. Our findings suggested that endogenous EPCs participated in the neovascularization via CXCR4/SDF-1 axis after pMCAO and mobilizing endogenous EPCs could be a treatment alternative for stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.