Abstract

Endogenous electric fields (EF) are the basis of bioelectric signal conduction and the priority signal for damaged tissue regeneration. Tissue exudation directly affects the characteristics of endogenous EF. However, current biomaterials lead to passive repair of defect tissue due to limited management of early wound exudates and inability to actively respond to coupled endogenous EF. Herein, the 3D bionic short-fiber scaffold with the functions of early biofluid collection, response to coupled endogenous EF, is constructed by guiding the short fibers into a 3D network structure and subsequent multifunctional modification. The scaffold exhibits rapid reversible water absorption, reaching maximum after only 30 s. The stable and uniform distribution of polydopamine-reduced graphene oxide endows the scaffold with stable electrical and mechanical performances even after long-term immersion. Due to its unique - bionic structure and tissue affinity, the scaffold further acts as an "electronic skin," which transmits endogenous bioelectricity via absorbing wound exudates, promoting the treatment of diabetic wounds. Furthermore, under the endogenous EF, the cascade release of vascular endothelial growth factor accelerates the healing process. Thus, the versatile scaffold is expected to be an ideal candidate for repairing different defect tissues, especially electrosensitive tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.