Abstract

In this study, we investigated the potency of dopamine for being an intrinsic signal for cyclic events in the fish retina. Dopaminergic activity was measured during different light/dark cycles, during continuous darkness, and during short-term light and dark adaptation within 1 h. During a 12-h light/12-h dark cycle, the total content of endogenous dopamine was high during the dark phase and low during the light phase. The potassium-induced release of endogenous dopamine followed a parallel time course. The concentration of the dopamine breakdown product 3,4-dihydroxyphenylacetic acid (DOPAC), which reflects the endogenous dopaminergic activity, was high during the light phase and low during the dark phase. Similar alterations occurred in accelerated 6-h light/6-h dark cycles, again indicating a strong coupling of dopaminergic activity with light. The cyclic alterations in the total endogenous dopamine content persisted during continuous darkness after an entrainment of the fish to a 12-h light/12-h dark cycle. Although the magnitude of the change was weaker, changes in dopamine content, potassium-induced dopamine release, and DOPAC were also measured during 1 h of light or dark adaptation. During a 1-h period of dark adaptation, the total content of dopamine and the potassium-induced release of endogenous dopamine increased, while DOPAC values decreased. These values changed in the opposite direction during 1 h of light adaptation. Our findings strongly suggest that dopamine is the intrinsic signal for light during both the light and dark phases and during short-term adaptation. Light seems to be the major trigger for dopaminergic activity within the fish retina.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.