Abstract

Previous research suggests that environmental and social factors can drive female birds to bias offspring sex ratios. The underlying mechanisms controlling these adjustments remain unclear. Results from experimental and correlative research suggest that maternal corticosterone plays an important role in this process. Since females are the heterogametic sex in birds, corticosterone may potentially bias offspring sex ratios during meiotic segregation, through non-random segregation of sex chromosomes. In a previous study, we showed that pharmacological elevations of corticosterone near the time of meiotic segregation exerted an effect on offspring sex ratio, causing female Zebra Finches ( Taeniopygia guttata) to produce significantly more males. Here, we aimed to determine whether endogenous elevations in the physiological range have similar effects on offspring sex. First we examined offspring sex ratio in relation to baseline corticosterone levels to determine if natural variation in circulating corticosterone near the time of meiotic segregation is related to offspring sex ratio. Next, we used a 5-minute bag handling protocol to induce corticosterone elevations 5 hours prior to ovulation. Maternal baseline corticosterone levels did not correlate with average clutch sex ratios. In addition, the sex ratios produced by females exposed to handling stress did not differ from sex ratios produced by unmanipulated females. Together these results suggest that physiological levels of endogenous corticosterone, both baseline and acutely elevated near the time of sex determination may not be involved in the adjustment of primary sex ratios in Zebra Finches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call