Abstract

BackgroundGene expression microarrays and real-time PCR are common methods used to measure mRNA levels. Each method has a fundamentally different approach of normalization between samples. Relative quantification of gene expression using real-time PCR is often done using the 2^(-ΔΔCt) method, in which the normalization is performed using one or more endogenous control genes. The choice of endogenous control gene is often arbitrary or bound by tradition. We here present an analysis of the differences in expression results obtained with microarray and real-time PCR, dependent on different choices of endogenous control genes.ResultsIn complex tissue, microarray data and real-time PCR data show the best correlation when endogenous control genes are omitted and the normalization is done relative to total RNA mass, as measured before reverse transcription.ConclusionWe have found that for real-time PCR in heterogeneous tissue samples, it may be a better choice to normalize real-time PCR Ct values to the carefully measured mass of total RNA than to use endogenous control genes. We base this conclusion on the fact that total RNA mass normalization of real-time PCR data shows better correlation to microarray data. Because microarray data use a different normalization approach based on a larger part of the transcriptome, we conclude that omitting endogenous control genes will give measurements more in accordance with actual concentrations.

Highlights

  • Gene expression microarrays and real-time PCR are common methods used to measure mRNA levels

  • A central idea of this method is the use of an endogenous control for normalization, a so-called housekeeping gene

  • Selection of endogenous control genes We made a definition of established endogenous controls as genes available commercially, such as from Applied Biosystems

Read more

Summary

Introduction

Gene expression microarrays and real-time PCR are common methods used to measure mRNA levels. Relative quantification of gene expression using real-time PCR is often done using the 2^(-ΔΔCt) method, in which the normalization is performed using one or more endogenous control genes. Relative quantification of mRNA levels using real-time PCR data is commonly done using the 2^(-ΔΔCt) method [1]. A central idea of this method is the use of an endogenous control for normalization, a so-called housekeeping gene. The aim of this normalization is to correct for different amounts of starting material of RNA or differences in the cDNA synthesis efficiency. Vandesompele and coworkers have suggested methods to circumvent (page number not for citation purposes)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call