Abstract

Bacterial pneumonia is a serious respiratory illness that poses a great threat to human life. Rapid and precise diagnosis of bacterial pneumonia is crucial for symptomatic clinical treatment. Endogenous carbon monoxide (CO) is regarded as a significant indicator of bacterial pneumonia; herein, we developed a near-infrared (NIR) probe for fluorescence and photoacoustic (PA) dual-mode imaging of endogenous CO in bacterial pneumonia. NO2-BODIPY could rapidly and specifically react with CO to produce strong NIR fluorescence as well as ratiometric PA signals. NO2-BODIPY has outstanding features including fast response, fluorescence/PA dual mode signals, good specificity, and a low limit of detection (LOD = 20.3 nM), which enables it to image endogenous CO in cells and bacterial pneumonia mice with high sensitivity and high contrast ratio. In particular, NO2-BODIPY has two-photon excited (1340 nm, σ1 = 1671 GM) NIR fluorescence and has been utilized to image endogenous CO in bacterial pneumonia mice with deep tissue penetration. NO2-BODIPY has been demonstrated a good capability of fluorescence/PA dual-mode imaging of CO in bacterial pneumonia mice, providing a precise manner to diagnose bacterial pneumonia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.