Abstract

A number of studies suggest melanocortin (MC) system involvement in nociceptive modulation. Although the mechanism through which this occurs is still unknown, experimental evidence would suggest a primary role of MC4 receptors. To further investigate the implication of this MC receptor subtype in chronic pain, we have studied the effects of several MC antagonists on spinal nerve ligation-induced nociceptive behavior in rats. The intrathecal injection of synthetic antagonists with different selectivity to MC4 receptor and of an endogenous antagonist (Agouti related protein; AgRP) reduced mechanical allodynia in neuropathic rats, as measured by von Frey hair test. Treatments produced an anti-allodynic effect at the dose of 1.5 nmol (25–30% maximum possible effect, MPE, P < 0.05). To further investigate the possible physiological role of AgRP in pain modulation we studied its expression in both sham and neuropathic rat spinal cord and dorsal root ganglia (DRG) by quantitative real time PCR and immunohistochemistry. AgRP was present in both spinal cord and DRG, and its expression, was unchanged in neuropathic animals. In conclusion MC4 receptor antagonists with different selectivity profile, induce anti-allodynic effects in one of the most relevant neuropathic pain model. In addition the expression of AgRP in spinal cord and DRG suggests an endogenous tonic inhibitory control on MC system activity. In pathological conditions this steady control could be insufficient to cope with an over activated MC system leading to increase in nociception. These data suggest that targeting MC4 with synthetic antagonists could restore the balance and hence reduce nociception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call