Abstract

Multiple studies have reported synergized toxicity of PAH mixtures in developing fish larvae relative to the additive effect of the components. From a toxicological perspective, multiple mechanisms are known to contribute to synergism, such as altered toxicodynamics and kinetics, as well as increased oxidative stress. An understudied contributor to synergism is the accumulation of endogenous metabolites, for example: the aryl hydrocarbon receptor 2 (AhR2) agonist and tryptophan metabolite 6-Formylindolo(3,2-b)carbazole (FICZ). Fish larvae exposed to FICZ, alongside knock-down of cytochrome p450 (cyp1a), has been reported to induced symptoms of toxicity similar to those observed following exposure to PAHs or the dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we explored if FICZ accumulates in newly hatched rainbow trout alevins (Oncorhynchus mykiss) exposed to two PAHs with different properties: retene (potent AhR2 agonist) and fluoranthene (weak AhR2 agonist and Cyp1a inhibitor), either alone or as a binary mixture for 3 and 7 days. We found that exposure to the mixture resulted in accumulation of endogenous FICZ, synergized the blue sac disease index (BSD), and altered the body burden profiles of the PAHs, when compared to the alevins exposed to the individual components. It is thus very plausible that accumulation of endogenously derived FICZ contributed to the synergized BSD index and toxicity in exposed alevins. Accumulation of endogenously derived FICZ is a novel finding that extends our general understanding on PAHs toxicity in developing fish larvae, while at the same time highlighting why environmental risk assessment of PAHs should not be based solely results from the assessment of individual compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call