Abstract
Endodontic shaping causes stress and strain in the root canal dentin. Dentin microcracks have the potential to be later followed by root fractures occurring under the occlusal load. The aim of our research was to theoretically determine the values of such dentinal states of stress and strain during the endodontic shaping of curved root canals using finite element analysis (FEA). To highlight the stress concentrations in dentin, two geometric models were created considering the volume of the curved dental root and the contact between the endodontic file and the root canal walls. The application of forces with different values was simulated both on a uniform curved root canal and on a root canal with an apical third curvature of 25° as they would be applied during the preparation of a root canal. In the case of the first model, which was acted upon with a force of 5 N, the deformations of the root canal appeared along the entire working length, reaching the highest values in the apical third of the root, although there were no geometric changes in the shape of the root canal. Regarding the second root model, with an apical third curvature of 25°, although the applied force was 2 N, the deformations were accompanied by geometric changes in the shape of the root, especially in the upper part of the apical third. At a higher force of 7 N exerted on the endodontic file, the geometric shape changed, and the deformation reached extreme critical values. The resulting tensile stresses appearing in the experimental structure varied similarly to the deformations. Significant stress and strain can develop, especially in the apical third of curved root canals during their shaping, and the risk of cracks is higher for endodontically treated teeth presenting severe curvatures in the apical third of the root.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.