Abstract

The glucose transporter GLUT8 cycles between intracellular vesicles and the plasma membrane. Like the insulin-responsive glucose transporter GLUT4, GLUT8 is primarily located in intracellular compartments under basal conditions. Whereas translocation of GLUT4 to the plasma membrane is stimulated by insulin, the distribution of GLUT8 is not affected by insulin treatment in adipose cells. However, blocking endocytosis by co-expression of a dominant-negative dynamin GTPase (K44A) or mutation of the N-terminal dileucine (LL(12/13)) motif in GLUT8 leads to accumulation of the glucose transporter at the cell surface in a variety of different cell types. Yeast two-hybrid analyses and GST pulldown assays reveal that the LL signal constitutes a binding site for the beta2-adaptin subunit of the heterotetrameric AP-2 adaptor complex, implicating this motif in targeting of GLUT8 to clathrin-coated vesicles. Moreover, yeast two-hybrid assays provide evidence that the binding site for the LL motif maps to the appendage domain of beta2-adaptin. To analyze the biological significance of the LL/beta2 interaction, we utilized RNA interference to specifically knockdown AP-2. Our results show that RNAi-mediated targeting of the mu2 subunit leads to cellular depletion of AP-2, but not AP-1 adaptor complexes in HeLa cells. As a consequence, GLUT8 accumulates at the plasma membrane at comparable levels to those observed in K44A-transfected cells. Conversely, the intracellular localization of mutant GLUT8-LL/AA is restored by replacing the LL motif in GLUT8 with the transferrin receptor-derived mu2-adaptin binding motif YTRF, indicating that for endocytosis both AP-2 binding motifs can substitute for each other. Thus, our data demonstrate that recruitment of GLUT8 to the endocytic machinery occurs via direct interaction of the dileucine motif with beta2-adaptin, and that endocytosis might be the main site at which GLUT8 is likely to be regulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.