Abstract

Cerium oxide nanoparticles (nanoceria) are a promising biomaterial that can catalytically scavenge reactive oxygen species (ROS). Modulation of ROS may potentially minimise the inflammatory effects of cancer. However, the antioxidant properties of nanoceria are reported to be pH-dependent and, thus, dependent on their mechanisms of endocytosis. This study is the first to examine the effects of particle size on the uptake and intracellular trafficking of flame spray-synthesised nanoceria in human cancer cells. This study demonstrated that the particle diameter, treatment time and cell type determined the mechanisms of uptake and intracellular localisation of nanoceria, as well as their ROS scavenging effects. This study highlighted the importance of testing new nanoparticle systems rather than making assumptions based on previous uptake studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.