Abstract

Self-assembling prodrug nanotherapeutics have emerged as a promising nanoplatform for anticancer drug delivery. The specific and efficient activation of prodrug nanotherapeutics inside tumor cells is vital for the antitumor efficacy and security. Herein, a triple-activable prodrug polymer (TAP) is synthesized by conjugating polyethylene glycol-poly-(caprolactone)-paclitaxel (PTX) polymer with two tumor-responsive bonds, disulfide and acetal. TAP could self-assemble into nanotherapeutics (TAP NTs) free of surfactant with a high drug loading (32.6%). In blood circulation, TAP NTs could remain intact to efficiently accumulate in tumor sites. Thereafter, tumor cells would internalize TAP NTs through multiple endocytosis pathways. Inside tumor cells, TAP NTs could be activated to release PTX and induce tumor cell apoptosis in triple pathways: (i) lysosomal acidity rapid activation; (ii) ROS-acidity tandem activation and (iii) GSH-acidity tandem activation. Compared with Taxol and non-activable control, TAP NTs significantly potentiate the antitumor efficacy and security of PTX against solid tumors including breast cancer and colon cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call