Abstract

The decay-accelerating factor (DAF) is a cell membrane glycoprotein that functions in the control of C activation. We studied the modulation of membrane DAF on polymorphonuclear cells (PMN) by using anti-DAF antibodies. Fluorescence-activated cell sorter analysis showed that DAF expression was reduced by 43 +/- 7% on resting or stimulated cells that were held at 37 degrees C for 30 min when compared with those kept on ice. Most of this reduction occurred within the first 15 min, and was followed by a gradual further decrease in surface DAF. PMN that were held at 37 degrees C for varying periods of time before DAF measurement had a gradual decrease suggestive of release of DAF from the PMN membrane or endocytosis. To examine the latter, PMN were reacted with anti-DAF at 0 degree C, followed by 125I-Fab'2 secondary antibodies at either 0 degree C or 37 degrees C, and subsequently treated with pronase. Thirty +/- 11% of the 125I remained bound to cells kept at 37 degrees C compared to 2% in those held at 0 degrees C. Internalization was further confirmed by electron microscopy. In PMN that were not exposed to pronase, 26 +/- 2% of the surface-associated 125I was released at 37 degrees C compared with 7% at 0 degrees C. Immunoprecipitation and SDS-PAGE of surface-labeled PMN showed that the temperature-dependent released DAF had a lower m.w. than membrane DAF. Immunofluorescent studies revealed that 37 degrees C mediated the redistribution of DAF from a homogeneous pattern into caps. These results show that under the conditions studied DAF is partially internalized and partially released from the PMN membrane to the fluid phase; the latter may contribute to the presence of DAF in body fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.