Abstract

Objective To explore the endocytic pathway of TAT-LHRH modified chitosan/DNA nanoparticle (TLCDN) that exhibits high transfection efficiency and targeting to HepG2.Methods Plasmid DNA was labeled with fluorescein,and the resulting fluorescent DNA was complexed with chitosan or TAT-LHRH modified chitosan to form chitosan/DNA nanoparticle (CDN) and TLCDN by the complex coacervation method.Internalization of TLCDN or CDN by HepG2 cells were measured in the presence of three kinds of inhibitors of endocytic pathway,Chlorpromazine,Filipin or Dynasore,using High-Content Analyzer to collect and analyze the data.Results Chlorpromazine led to more decreased uptake of CDN than that of TLCDN,although not statistically significant.Filipin demonstrated significant inhibitory effect on the uptake of TLCDN while promoted the uptake of CDN.Dynasore resulted in a similar decrease in the uptake of both nanoprticles.Conclusion It was demonstrated that CDN was taken up by HepG2 cells mainly through the clathrin-dependent endocytic pathway and TLCDN was more likely to be internalized by HepG2 cells through the caveolin-mediated endocytic pathway although the clathrin-dependent endocytic pathway was also involved. Key words: Two peptides modified chitosan; Nanoparticle; Endocytic pathway

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.