Abstract

The objective of this study was to investigate plasma volume (PV), total body water, hormones and hydroelectrolyte responses in eight males (25-40 years) and eight females (25-31 years) during 7 days of exposure to simulated microgravity (-6 degrees head-down bed rest, HDBR). Bed rest is a model that has commonly been used to simulate spaceflight. Heart rate (HR), blood pressure (BP) and vasoactive hormone responses were studied before and after HDBR during a 10-min stand test. No change in total body water and body mass was noted in either sex. The decrease in PV was similar in both men (9.1 +/- 1.4%) and women (9.4 +/- 0.8%). Urinary normetanephrine (NMN) was decreased during HDBR in both sexes. Urinary metanephrine (MN) and plasma catecholamines were unchanged. Daily urinary excretion of urea, an indirect index of protein breakdown, was increased only in the female subjects during HDBR. Plasma active renin (AR) and aldosterone were increased in both sexes, but urinary atrial natriuretic peptide (ANP) and arginine vasopressin (AVP) were unchanged throughout the study. Also, the hormonal responses to 7 days of HDBR were comparable between men and women. Moreover, the results show similar cardiovascular and endocrine responses to standing after HDBR. However, the orthostatic intolerance following HDBR was associated with a blunted increase in noradrenaline (NA) only in the women during the stand test. It is concluded that: (i) 7 days of physical inactivity achieved during HDBR resulted in a reduced sympathetic activity in both sexes and alterations in protein metabolism in women and (ii) standing after HDBR resulted in an attenuated release of noradrenaline in women.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.