Abstract

Abstract Animal communication requires senders to transmit signals through the environment to conspecific receivers, which then leads to context-dependent behavioral decisions. Sending and receiving sensory information in social contexts, however, can be dramatically influenced by an individual’s internal state, particularly in species that cycle in and out of breeding or other physiological condition like nutritional state or social status. Modulatory substances like steroids, peptides, and biogenic amines can influence both the substrates used for sending social signals (e.g., motivation centers, sensorimotor pathways, and muscles) as well as the peripheral sensory organs and central neural circuitry involved in the reception of this information and subsequent execution of behavioral responses. This issue highlights research from neuroethologists on the topic of modulation of sending and receiving social signals and demonstrates that it can occur in both males and females, in different senses at both peripheral sensory organs and the brain, at different levels of biological organization, on different temporal scales, in various social contexts, and across many diverse vertebrate taxa. Modifying a signal produced by a sender or how that signal is perceived in a receiver provides flexibility in communication and has broad implications for influencing social decisions like mate choice, which ultimately affects reproductive fitness and species persistence. This phenomenon of modulators and internal physiological state impacting communication abilities is likely more widespread than currently realized and we hope this issue inspires others working on diverse systems to examine this topic from different perspectives. An integrative and comparative approach will advance discovery in this field and is needed to better understand how endocrine modulation contributes to sexual selection and the evolution of animal communication in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.