Abstract

Finding food sources is a prerequisite for an acute food intake. This process is initiated by ghrelin released from X/A-like cells of the gastrointestinal tract. Because food finding often depends on olfaction, the question arises whether ghrelin may affect the responsiveness of the olfactory system. Monitoring odor-induced activation of the mouse olfactory epithelium via Egr1 expression revealed that after a nasal application of ghrelin, more sensory neurons responded upon odor exposure indicating an increased responsiveness. The higher reactivity of olfactory neurons was accompanied with an increased activity of receptor-specific glomeruli. In search for mechanisms underlying the ghrelin-mediated sensitization of olfactory neurons, it was shown that Ghsr1a, the ghrelin receptor gene, but not the hormone itself was expressed in the olfactory epithelium. Further analysis of isolated cells revealed that the receptor was in fact expressed in mature olfactory sensory neurons. Treatment with a ghrelin receptor antagonist abolished the ghrelin effect, strengthening the notion that ghrelin and its receptor are responsible for the enhanced neuronal responsiveness. In contrast to the effects of the "hunger" hormone ghrelin, the short-term "satiety" hormone PYY3-36 did not affect olfactory responsiveness. The results demonstrate that ghrelin, which signals acute hunger, renders the olfactory system more responsive to odors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.