Abstract
Photoinitiators used in food packaging ink, such as 2-isopropylthioxanthone (2-ITX), have been shown to migrate into food and beverages. Recently, several studies indicated that 2-ITX might be an endocrine-disrupting chemical. In this work, the effects of 2-ITX, 4-isopropylthioxanthone (4-ITX), 2,4-diethylthio xanthone (2,4-diethyl-TX), 2-chlorothioxanthone (2-chloro-TX), and 1-chloro-4-propoxythioxanthone (1-chloro-4-propoxy-TX) on steroidogenesis and androgen and estrogen receptor-mediated transcription activation have been studied using human H295R adrenocarcinoma cells and yeast hormone bioassays, respectively. None of the compounds showed androgenic or estrogenic activities, but clear antiandrogenic and antiestrogenic activities were observed for 2-ITX, 4-ITX, and 2,4-diethyl-TX, whereas 2-chloro-TX showed only antiandrogenic activity. In an adapted version of the H295R steroidogenesis assay, using gas chromatography-tandem mass spectrometry analysis of H295R media, all five compounds increased levels of 17ß-estradiol and estrone. H295R cells incubated with 2-ITX also showed significantly reduced androgen and increased pregnenolone and progesterone levels. Expression of particular steroidogenic genes, including the one encoding for aromatase (CYP19A1), was significantly upregulated after incubation of H295R cells with 2-ITX, 4-ITX, and 2,4-diethyl-TX. In line with the increased CYP19A1 mRNA expression, 2-ITX increased catalytic activity of aromatase in H295R cells as measured by cognate aromatase assays. The results indicate that thioxanthone derivatives can act as potential endocrine disruptors both at the level of nuclear receptor signaling and steroid hormone production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.