Abstract

Parabens (PBs), a group of widely used synthetic preservatives with potential endocrine disrupting activity, have been detected with increasing frequency in organisms and environmental matrices. This study assessed the hormone interference effects of four typical PBs, namely methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP), in zebrafish and elucidated the probable underlying mechanisms. Transcriptomic and metabolomic analyses showed that the differentially expressed genes and metabolites were associated with the tyrosine metabolism, arachidonate metabolism, and glycerophospholipid metabolism, indicating they were essential precursors of steroid hormone biosynthesis and metabolism. Histopathological analysis revealed impaired gonad development in the zebrafish exposed to PBs, as evidenced by the significantly increased vitellogenin (VTG) and estradiol (E2) levels. Furthermore, molecular dynamics simulation suggested that the four PBs could preferentially activate the zebrafish estrogen receptor, zfERβ2, to regulate the downstream pathways. Disruption of the amino acid metabolism and lipid metabolism, and activation of zfERβ2 signaling pathway were found to be the key mechanisms for the endocrine disrupting effects of PBs. The hormone interference effects of PBs were apparently dependent on the shared oxybenzene on their structures, with the degree of interference determined largely by the length of their alkyl chains. These findings provide new insights into the endocrine disrupting effects of PBs and could help better assess their risk to human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call