Abstract
The path and interaction of leads within the cardiovascular system are influenced by various factors, including the implantation technique. Furthermore, the multifaceted composition of these leads, often comprising multiple materials, can contribute to their potential degradation and wear over time. Our aim was to investigate the wear of lead insulation following the removal of transvenous leads and pinpoint the regions of the lead most vulnerable to damage. We undertook a prospective analysis of patients from a single tertiary center who underwent transvenous lead explantation (TLE) between October 1, 2013, and July 31, 2015. Specifically, our examination focused on endocardial leads removed using simple screw-out and gentle traction techniques. Subsequent lead evaluations were conducted utilizing scanning electron and optical microscopes. Among the 86 patients who underwent the TLE procedure, 26 patients (30%) required the removal of 39 leads through simple traction. Inspection using scanning electron microscopy consistently indicated insulation damage across all leads. A total of 347 damaged sites were identified: 261 without lead unsealing and 86 exhibiting unsealing. Notably, the sections of the leads located within the intra-pocket area demonstrated the highest vulnerability to damage (odds ratio (OR): = 9.112, 95% confidence interval (95% CI): 3.326-24.960), whereas the intravenous regions displayed the lowest susceptibility (OR: 0.323, 95% CI: 0.151-0.694). Our study reveals that all evaluated leads exhibited insulation damage, with the intra-pocket segments manifesting a notably higher prevalence of damage than the intravenous segments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in clinical and experimental medicine : official organ Wroclaw Medical University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.