Abstract

Because congestive heart failure (CHF) promotes ventricular fibrillation (VF), we compared VF in seven dogs with CHF induced by combined myocardial infarction and rapid ventricular pacing to VF in six normal dogs. A noncontact, multielectrode array balloon catheter provided full-surface real-time left ventricular (LV) endocardial electrograms and a dynamic color-coded display of endocardial activation projected onto a three-dimensional model of the LV. Fast Fourier transform (FFT) analysis of virtual electrograms showed no difference in peak or centroid frequency in CHF dogs compared with normals. The average number of simultaneous noncontiguous wavefronts present during VF was higher in normals (2.4 +/- 1.0 at 10 s of VF) than in CHF dogs (1.3 +/- 1.0, P < 0.005) and decreased in both over time. The wavefront "turnover" rate, estimated using FFT of the noncontiguous wavefront data, did not differ between normals and CHF and did not change over 5 min of VF. Thus the fundamental frequency characteristics of VF are unaltered by CHF, but dilated abnormal ventricles sustain fewer active wavefronts than do normal ventricles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.