Abstract
Among all mental disorders, major depression has the highest rate of prevalence and incidence of morbidity. Currently available antidepressant therapies have limited efficacies; consequently, research on new drugs for the treatment of mood disorders has become increasingly critical. Recent preclinical evidences that cannabinoid agonists and endocannabinoid enhancers, such as the fatty acid amide hydrolase (FAAH) inhibitors, can impact mood regulation have opened a new line of research in antidepressant drug discovery. However, the neurobiological mechanisms linking the endocannabinoid system with the pathophysiology of mood disorders and antidepressant action remain unclarified. In this review, we have presented an update on preclinical data indicating the antidepressant potential of cannabinoid agonists and endocannabinoid enhancers in comparison to standard antidepressants. Data obtained from CB(1) knockout (CB(1)-/-) and FAAH knockout (FAAH-/-) mice have also been examined within this context. We have illustrated how the various classes of antidepressants exert their therapeutic action. In particular, all antidepressants increase the neurotransmission of serotonin after long-term treatment, enhance the tonic activity of hippocampal 5-HT(1A) receptors, promote neurogenesis, and modulate (decrease or increase) the firing activity of noradrenergic neurons. Interestingly, cannabinoid agonists and endocannabinoid enhancers increase serotonin and noradrenergic neuronal firing activity, increase serotonin release in the hippocampus, as well as promote neurogenesis. Since cannabinoid-derived drugs potentiate monoaminergic neurotransmission and hippocampal neurogenesis through distinct pathways compared to classical antidepressants, they may represent an alternative drug class in the pharmacotherapy of mood and other neuropsychiatric disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.