Abstract

Endocan, previously called endothelial cell specific molecule-1, is a soluble proteoglycan of 50 kDa, constituted of a mature polypeptide of 165 amino acids and a single dermatan sulphate chain covalently linked to the serine residue at position 137. This dermatan sulphate proteoglycan, which is expressed by the vascular endothelium, has been found freely circulating in the bloodstream of healthy subjects. Experimental evidence is accumulating that implicates endocan as a key player in the regulation of major processes such as cell adhesion, in inflammatory disorders and tumor progression. Inflammatory cytokines such as TNF-α, and pro-angiogenic growth factors such as VEGF, FGF-2 and HGF/SF, strongly increased the expression, synthesis or the secretion of endocan by human endothelial cells. Endocan is clearly overexpressed in human tumors, with elevated serum levels being observed in late-stage lung cancer patients, as measured by enzyme-linked immunoassay, and with its overexpression in experimental tumors being evident by immunohistochemistry. Recently, the mRNA levels of endocan have also been recognized as being one of the most significant molecular signatures of a bad prognosis in several types of cancer including lung cancer. Overexpression of this dermatan sulphate proteoglycan has also been shown to be directly involved in tumor progression as observed in mouse models of human tumor xenografts. Collectively, these results suggest that endocan could be a biomarker for both inflammatory disorders and tumor progression as well as a validated therapeutic target in cancer. On the basis of the recent successes of immunotherapeutic approaches in cancer, the preclinical data on endocan suggests that an antibody raised against the protein core of endocan could be a promising cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.