Abstract
Approximately 40% of mammalian genome is made of transposable elements (TEs), and during specific biological processes, such as gametogenesis, they may be activated by global demethylation, so strict silencing mechanism is indispensable for genomic stability. Here, we performed small RNA-seq on Dicer1 knockdown (KD) oocytes in pig, and observed short interspersed nuclear elements 1B (SINE1B) derived endogenous small interfering RNAs (endo-siRNAs), termed SINE1B-siRNAs, were significantly decreased and their biogenesis was dependent on Dicer1 and transcript of SINE1B. Furthermore, by injection of mimics and inhibitors of the SINE1B-siRNAs into germinal vesicle-stage (GV-stage) oocytes, we found the maturation rate was significantly decreased by SINE1B-siRNAs, indicating the SINE1B-siRNAs are indispensible for in vitro maturation (IVM) of porcine oocyte. To figure out the mechanism, we checked the expression pattern and DNA methylation status of SINE1B during IVM of porcine oocytes, and demonstrated the SINE1B-siRNAs could repress SINE1B expression induced by hypomethylation at a post-transcriptional level. Our results suggest that during gametogenesis when the erasure of DNA methylation occurs, endo-siRNAs act as a chronic response to limit retrotransposon activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.