Abstract

Tumor microenvironment (TME) responsive chemodynamic therapy (CDT) can produce high-toxic hydroxyl radicals (·OH) to kill cancer cells, but the limited concentration of endogenous hydrogen peroxide (H2O2) seriously restricted its application. Herein, using endo/exo-genous dual-stimuli, a novel nanoprobe with enhanced ·OH generation was developed for magnetic resonance (MR) imaging and multimodal therapeutics, in which gold nanotetrapod (AuNTP) with photothermal therapy (PTT) performance was coated with mesoporous silica (mSiO2) and loaded with cisplatin (CDDP), then a thin layer of manganese dioxide (MnO2) was deposited to construct AuNTP@mSiO2@CDDP@MnO2 nanoprobes. In TME, endogenous H2O2, CDDP-triggered self-supplying H2O2 produced via cascade reaction and the exogenous photothermal effect of AuNTPs together enhanced the ·OH generation of Mn2+ induced by glutathione (GSH) responsive degradation of MnO2. The prepared AuNTP@mSiO2@CDDP@MnO2 nanoprobes possessed perfect core@shell structure, good biocompatibility and GSH-dependent MR performance, in which the relaxation rates increased from 0.717 mM−1·s−1 to 8.12 mM−1·s−1. Under the multimodal therapeutics of CDT/PTT/chemotherapy, the developed AuNTP@mSiO2@CDDP@MnO2 nanoprobes demonstrated good antitumor efficacy. Our work provided a promising strategy for constructing TME-responsive nanoprobes with endo/exo-genous stimuli, achieving enhanced visualized theranostics of tumors. Statement of significanceTumor microenvironment (TME) responsive chemodynamic therapy (CDT) can produce high-toxic hydroxyl radicals (·OH) to kill cancer cells, but the limited concentration of endogenous hydrogen peroxide (H2O2) seriously restricted its application. Using endo/exo-genous dual-stimuli, AuNTP@mSiO2@CDDP@MnO2 (AMCM) nanoprobe was constructed, in which endogenous H2O2, CDDP-triggered self-supplying H2O2 and the exogenous photothermal effect of AuNTPs together enhanced the ·OH generation. Under the multimodal therapeutics of CDT/PTT/chemotherapy, the developed AuNTP@mSiO2@CDDP@MnO2 nanoprobe demonstrated good antitumor efficacy, and provided a promising strategy for constructing TME-responsive nanoprobes with endo/exo-genous stimuli, achieving enhanced CDT of tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.