Abstract

Endmember extraction is a process to identify the hidden pure source signals from the mixture. In the past decade, numerous algorithms have been proposed to perform this estimation. One commonly used assumption is the presence of pure pixels in the given image scene, which are detected to serve as endmembers. When such pixels are absent, the image is referred to as the highly mixed data, for which these algorithms at best can only return certain data points that are close to the real endmembers. To overcome this problem, we present a novel method without the pure-pixel assumption, referred to as the minimum volume constrained nonnegative matrix factorization (MVC-NMF), for unsupervised endmember extraction from highly mixed image data. Two important facts are exploited: First, the spectral data are nonnegative; second, the simplex volume determined by the endmembers is the minimum among all possible simplexes that circumscribe the data scatter space. The proposed method takes advantage of the fast convergence of NMF schemes, and at the same time eliminates the pure-pixel assumption. The experimental results based on a set of synthetic mixtures and a real image scene demonstrate that the proposed method outperforms several other advanced endmember detection approaches

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.