Abstract

Acoustic returns from seafloor sediment are comprised of scattering from both the interface and sediment volume. Although volume scattering is often the dominant mechanism, direct measurements of this component have rarely been made, if at all, due to interface roughness biasing. This bias is especially prevalent at lower frequencies where beam widths are typically 30–40 degrees. Current synthetic aperture sonar (SAS) systems are side looking and achieve narrow beam widths by coherently combining multiple acoustic pings as the sonar moves. End-fire (forward-looking) SAS would formulate a synthetic array in the same direction of travel by vertically orienting a transducer and lowering it towards the seafloor while pinging. This would create a narrow beam, significantly reducing the interface roughness bias. End-fire SAS array gains are not as substantial as conventional side-looking SAS. However, beam pattern simulations suggest the gains are still significant: a synthetic array length of 100 wavelengths c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.