Abstract

A 3-year study was performed in southern Alberta, Canada to assess the effect of endectocide residues on the attractiveness of cattle dung to colonizing insects. In 2003 and 2004, insect captures were compared between pitfall traps baited with dung of untreated cattle and paired traps baited with dung of cattle that had been treated 7 days previously with topically applied doramectin, eprinomectin, ivermectin or moxidectin. Faecal residues associated with each compound affected insect captures in both spring and autumn of each year. Effects were detected (P < 0.05) for a total of 94 cases representing 27 insect taxa from 13 families in three orders (Coleoptera, Diptera, Hymenoptera). Two-fold differences in captures were common. Up to six-fold differences were observed. Eleven cases of attraction and 11 cases of repellency were associated with residues of doramectin. Eprinomectin tended to repel insects, with decreased captures for 19 of 29 cases of effect. Ivermectin showed a strong attractive effect, with increased captures for 17 of 25 cases. Moxidectin also showed a strong attractive effect, with increased captures for 17 of 18 cases. Comparisons between compounds suggested that results for doramectin best predicted results for eprinomectin and vice versa. In 2005, insect captures were compared between pitfall traps baited with dung of untreated cattle and traps baited with dung from cattle treated 3, 7 or 14 days previously with topically applied doramectin. Effects were detected in 14 cases plus one case of near significance (P= 0.053). Significant differences between control vs. days 3, 7 and/or 14 dung were detected in nine cases. Residues enhanced captures in seven of these cases. Day 14 dung affected captures in six of these cases. This study shows that endectocide residues can affect the number of insects attracted to colonize and oviposit in dung. Hence, the emergence of their offspring from field-colonized dung of untreated vs. endectocide-treated cattle should not be used as a measure of residue toxicity per se, but rather as a measure of 'insect activity'. Insect activity is a composite measure of residue toxicity, the number and species composition of insect colonists, and the mortality factors (e.g. predation, parasitism, competition) associated with the co-occurrence of these species in the dung pat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call