Abstract

Capillary electrophoresis (CE) was coupled to a micro-electrode-based end-column amperometric detector. The influences of separation voltage, CE buffer concentration, and capillary-to-electrode distance on the observed hydrodynamic voltammetry of dopamine and catechol were studied using a separation capillary with an i.d. of 25 microns. It was found that an increased CE voltage, increased buffer concentration, or decreased capillary-to-electrode distance resulted in a positive shift of the observed half-wave potentials for both dopamine and catechol. At a constant separation current of 1.6 microA, the observed half-wave potential was found to increase with applied separation voltage. Furthermore, when experiments were carried out with a platinum quasi-reference electrode instead of a Ag/AgCl reference electrode, similar shifts in half-wave potential were observed. These results indicate that the observed shifts are an effect of the separation voltage rather than the separation current or a change in the reference potential. The characteristics of end-column detection with and without a fracture decoupler were compared. It was found that the effects of separation voltage, CE buffer concentration, and capillary-to-electrode distance were minimized by the use of a decoupling device. The observed half-wave potentials for dopamine and catechol were more positive when a CE capillary without a decoupler was employed compared to when a decoupler was used. Additionally, using the fracture decoupler, the observed half-wave potentials for both dopamine and catechol were approximately the same as when no CE voltage was applied (i.e., when the hydrodynamic voltammograms were recorded under flow injection conditions).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call