Abstract
In Holter monitoring, the precise detection of standard heartbeats and ventricular premature contractions (PVCs) is paramount for accurate cardiac rhythm assessment. This study introduces a novel application of the 1D U-Net neural network architecture with the aim of enhancing PVC detection in Holter recordings. Training data comprised the Icentia 11k and INCART DB datasets, as well as our custom dataset. The model's efficacy was subsequently validated against traditional Holter analysis methodologies across multiple databases, including AHA DB, MIT 11 DB, and NST, as well as another custom dataset that was specifically compiled by the authors encompassing challenging real-world examples. The results underscore the 1D U-Net model's prowess in QRS complex detection, achieving near-perfect balanced accuracy scores across all databases. PVC detection exhibited variability, with balanced accuracy scores ranging from 0.909 to 0.986. Despite some databases, like the AHA DB, showcasing lower sensitivity metrics, their robust, balanced accuracy accentuates the model's equitable performance in discerning both false positives and false negatives. In conclusion, while the 1D U-Net architecture is a formidable tool for QRS detection, there's a clear avenue for further refinement in its PVC detection capability, given the inherent complexities and noise challenges in real-world PVC occurrences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.