Abstract
Lately, video-language pre-training and text-video retrieval have attracted significant attention with the explosion of multimedia data on the Internet. However, existing approaches for video-language pre-training typically limit the exploitation of the hierarchical semantic information in videos, such as frame semantic information and global video semantic information. In this work, we present an end-to-end pre-training network with Hierarchical Matching and Momentum Contrast named HMMC. The key idea is to explore the hierarchical semantic information in videos via multilevel semantic matching between videos and texts. This design is motivated by the observation that if a video semantically matches a text (can be a title, tag or caption), the frames in this video usually have semantic connections with the text and show higher similarity than frames in other videos. Hierarchical matching is mainly realized by two proxy tasks: Video-Text Matching (VTM) and Frame-Text Matching (FTM). Another proxy task: Frame Adjacency Matching (FAM) is proposed to enhance the single visual modality representations while training from scratch. Furthermore, momentum contrast framework was introduced into HMMC to form a multimodal momentum contrast framework, enabling HMMC to incorporate more negative samples for contrastive learning which contributes to the generalization of representations. We also collected a large-scale Chinese video-language dataset (over 763k unique videos) named CHVTT to explore the multilevel semantic connections between videos and texts. Experimental results on two major Text-video retrieval benchmark datasets demonstrate the advantages of our methods. We release our code at https://github.com/cheetah003/HMMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.