Abstract

Deep learning technology has encouraged research on noise-robust automatic speech recognition (ASR). The combination of cloud computing technologies and artificial intelligence has significantly improved the performance of open cloud-based speech recognition application programming interfaces (OCSR APIs). Noise-robust ASRs for application in different environments are being developed. This study proposes noise-robust OCSR APIs based on an end-to-end lip-reading architecture for practical applications in various environments. Several OCSR APIs, including Google, Microsoft, Amazon, and Naver, were evaluated using the Google Voice Command Dataset v2 to obtain the optimum performance. Based on performance, the Microsoft API was integrated with Google’s trained word2vec model to enhance the keywords with more complete semantic information. The extracted word vector was integrated with the proposed lip-reading architecture for audio-visual speech recognition. Three forms of convolutional neural networks (3D CNN, 3D dense connection CNN, and multilayer 3D CNN) were used in the proposed lip-reading architecture. Vectors extracted from API and vision were classified after concatenation. The proposed architecture enhanced the OCSR API average accuracy rate by 14.42% using standard ASR evaluation measures along with the signal-to-noise ratio. The proposed model exhibits improved performance in various noise settings, increasing the dependability of OCSR APIs for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.