Abstract

The interest in autonomous vehicles has increased exponentially in recent years. While Lidar is a proven autonomous driving technology, end-to-end learning approaches have become popular as computer performance has improved. A fully end-to-end method—NVIDIA’s PilotNet has shown its ability to predict speed and steering angle with only camera images. This method achieved the Lidar-based methods’ performance in simple driving tasks. However, a significant drawback was no past spatiotemporal information, imposing an error-sensitive performance, especially in complex driving tasks. Spurred by this deficiency, this paper introduces two novel models: CNN + LSTM and CNN3D, aiming for complex autonomous driving tasks in indoor environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.