Abstract

Prediction of preterm birth is a difficult task for clinicians. By examining an electrohysterogram, electrical activity of the uterus that can lead to preterm birth can be detected. Since signals associated with uterine activity are difficult to interpret for clinicians without a background in signal processing, machine learning may be a viable solution. We are the first to employ Deep Learning models, a long-short term memory and temporal convolutional network model, on electrohysterography data using the Term–Preterm Electrohysterogram database. We show that end-to-end learning achieves an AUC score of 0.58, which is comparable to machine learning models that use handcrafted features. Moreover, we evaluate the effect of adding clinical data to the model and conclude that adding the available clinical data to electrohysterography data does not result in a gain in performance. Also, we propose an interpretability framework for time series classification that is well-suited to use in case of limited data, as opposed to existing methods that require large amounts of data. Clinicians with extensive work experience as gynaecologist used our framework to provide insights on how to link our results to clinical practice and stress that in order to decrease the number of false positives, a dataset with patients at high risk of preterm birth should be collected. All code is made publicly available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.