Abstract
The comparison of genomes using models of molecular evolution is a powerful approach for finding, or toward understanding, functional elements. In particular, comparative genomics is a fundamental building brick in annotating ever larger sets of alignable genomes completely, accurately and consistently. We here present our new program ClaMSA that classifies multiple sequence alignments using a phylogenetic model. It uses a novel continuous-time Markov chain machine learning layer, named CTMC, whose parameters are learned end-to-end and together with (recurrent) neural networks for a learning task. We trained ClaMSA discriminatively to classify aligned codon sequences that are candidates of coding regions into coding or non-coding and obtained four times fewer false positives for this task on vertebrate and fly alignments than existing methods at the same true positive rate. ClaMSA and the CTMC layer are general tools that could be used for other machine learning tasks on tree-related sequence data. Freely from https://github.com/Gaius-Augustus/clamsa. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.