Abstract

In highly dynamic wireless networks, communications face several challenges. In the first place, noise levels between nodes might be difficult to predict a priori . Besides, a Byzantine attacker hidden in the network, with knowledge of the network topology and observation of all transmissions, can choose arbitrary locations to inject corrupted packets. Considering that transmissions are usually in bits and hardware in wireless networks usually use modulation schemes with the size of modulation alphabet being powers of two, e.g. BPSK, QPSK, 16-QAM, 64-QAM, and so on, to address the above problem, we study coding for networks experiencing worst case bit errors, and with network codes over binary extension fields. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. A new transform metric for errors under the considered model is proposed. Using this metric, we replicate many of the classical results from coding theory. Specifically, new Hamming-type , Plotkin-type , and Elias-Bassalygo-type upper bounds on the network capacity are derived. A commensurate lower bound is shown based on Gilbert–Varshamov (GV)-type codes for error-correction. The GV codes used to attain the lower bound can be non-coherent, that is, they require neither prior knowledge of the network topology nor network coding kernels. We also propose a computationally efficient concatenation scheme. The rate achieved by our concatenated codes is characterized by a Zyablov-type lower bound. We provide a generalized minimum-distance decoding algorithm which decodes up to half the minimum distance of the concatenated codes. The end-to-end nature of our design enables our codes to be overlaid on the classical distributed random linear network codes. The other advantage of the end-to-end strategy over the link-by-link error-correction is that it reduces the computational cost at the internal nodes for performing error-correction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call