Abstract

We present an analytical framework for optimizing the efficiency of ultrasonic wireless power links for implantable devices scaled down to sub-mm dimensions. Key design insights and tradeoffs are considered for various parameters including the operating frequency, the transmission depth, the size of the transmitter, the impedance and the aperture efficiency of the miniaturized receiver, and the interface between the receiver and the power recovery chain on the implant. The performance of spherically focused transducers as ultrasonic transmitters is analyzed to study the limits and the tradeoffs. Two optimization methods are presented: "Focal Peak" sets the focus of transducers at target depths, and "Global Maximum" maximizes the efficiency globally with off-focus operation. The results are also compared to phased array implementations. To investigate the efficiency of implants, miniaturized receivers made from single crystalline piezoelectric material, PMN-PT, are used as they have resonances in the derived optimal carrier frequency range (∼1-2 MHz). A methodology to achieve an efficient interface to the power electronics is then provided using an optogenetic stimulator as an example platform. The analytical results are verified through both simulations and measurements. Finally, an example ultrasonic link using a spherical transmitter with a radius of 2cm is demonstrated; link efficiencies of 1.93-0.23% are obtained at 6-10cm depths with sub-mm receivers for the optogenetic application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.