Abstract

This paper presents Quality of Service (QoS) based routing and priority class assignment algorithms. It introduces an end-to-end delay margin balancing approach to routing, and uses it to formulate a nonlinear optimization problem. In a single-class network, the formulation is shown to be convex; however in a multi-class priority network, it is only convex within specific regions, and is infeasible otherwise. A centralized off-line computation technique is proposed to calculate both the route configuration and end-to-end priority assignment. A gradient-based solution in the convex region and a heuristic to overcome the multi-class discontinuity are derived. An approximation of the optimization problem is developed for on-line distributed processing is then presented. Using the approximation, arriving traffic flows can use vector routing tables to search for routes. Compared with minimum-hop, minimum-delay, and min-interference routing algorithms, the proposed approach enables the single-class network to accommodate more users of different end-to-end delay requirements. In a multi-class priority network, results show that using the objective function to combine route and priority class assignment further increases the supportable network traffic volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.