Abstract

There is an ongoing debate in the research and industry communities as to whether IEEE 802.11p or Third-Generation Partnership Project (3GPP) Long-Term Evolution (LTE) should be used for vehicular communications. In this paper, we argue that a hybrid vehicular network combining both technologies can increase the performance of the system. We first propose a mechanism to improve location-based routing in a hybrid vehicular network architecture by data and signaling traffic separation on independent wireless networks. We then develop analytical models to calculate the stochastic upper bound of the end-to-end delay (E2ED) for location-based routing in three different networking architecture alternatives based on a) short-range ad hoc only, b) cellular only, and c) the proposed hybrid ad hoc/cellular network. The analytical approach in this paper is based on the stochastic network calculus (SNC) theory, which provides a solid and uniform framework for analysis of the upper bound of the E2ED in communication networks. It is demonstrated that the proposed hybrid network provides a lower E2ED compared with the other two alternatives. Comparisons of realistic simulation results, carried out in NS-3, and analytical results show that the proposed delay bounds provide relatively tight approximations for the E2ED in the three alternative architectures for vehicular networks investigated in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call