Abstract

Inspired by the UNet architecture of semantic image segmentation, we propose a lightweight UNet using depthwise separable convolutions (DSUNet) for end-to-end learning of lane detection and path prediction (PP) in autonomous driving. We also design and integrate a PP algorithm with convolutional neural network (CNN) to form a simulation model (CNN-PP) that can be used to assess CNN’s performance qualitatively, quantitatively, and dynamically in a host agent car driving along with other agents all in a real-time autonomous manner. DSUNet is 5.12 $$\times $$ lighter in model size and 1.61 $$\times $$ faster in inference than UNet. DSUNet-PP outperforms UNet-PP in mean average errors of predicted curvature and lateral offset for path planning in dynamic simulation. DSUNet-PP outperforms a modified UNet in lateral error, which is tested in a real car on real road. These results show that DSUNet is efficient and effective for lane detection and path prediction in autonomous driving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.