Abstract
Vehicular ad hoc network (VANET) is able to facilitate data exchange among vehicles and provides diverse data services. Intuitively, end-to-end backlog and delay bounds are considered significant metrics to evaluate the quality of service in VANETs. In order to analyze how the multi-hop transmission impacts the delay performance, we model the multi-hop service process into a virtualized single service in a min-plus convolution form. To obtain multi-hop end-to-end backlog and delay bound, we consider the stochastic network traffic characteristics and the highly dynamic channel environment under the static priority, first in first out, and earliest deadline first scheduling policies by applying the martingale theory. The IEEE 802.11p enhanced distributed channel access mechanism is also adopted to analyze the access performance in the MAC sub-layer. With three kinds of real wireless data traces, i.e., VoIP, gaming, and UDP, we verify our algorithm by considering the double Nakagami- $m$ fading channel model among vehicles. From the simulation results, we can see that the supermartingale end-to-end backlog and delay bound are remarkably tight to the real simulation results when compared with the existing standard bounds. The effect of the number of vehicles on the highway on the end-to-end backlog and delay performance is also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.