Abstract
AbstractFor a general k-dimensional Brakke flow in $${\mathbb {R}}^n$$ R n locally close to a k-dimensional plane in the sense of measure, it is proved that the flow is represented locally as a smooth graph over the plane with estimates on all the derivatives up to the end-time. Moreover, at any point in space-time where the Gaussian density is close to 1, the flow can be extended smoothly as a mean curvature flow up to that time in a neighborhood: this extends White’s local regularity theorem to general Brakke flows. The regularity result is in fact obtained for more general Brakke-like flows, driven by the mean curvature plus an additional forcing term in a dimensionally sharp integrability class or in a Hölder class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.