Abstract

BackgroundFor healthcare providers in the prehospital setting, bag-valve mask (BVM) ventilation could be as efficacious and safe as endotracheal intubation. To facilitate the evaluation of efficacious ventilation, capnographs have been further developed into small and convenient devices able to provide end- tidal carbon dioxide (ETCO2). The aim of this study was to investigate whether a new portable device (EMMA™) attached to a ventilation mask would provide ETCO2 values accurate enough to confirm proper BVM ventilation.MethodsA prospective observational trial was conducted in a single level-2 centre. Twenty-two patients under general anaesthesia were manually ventilated. ETCO2 was measured every five minutes with the study device and venous PCO2 (PvCO2) was simultaneously measured for comparison. Bland- Altman plots were used to compare ETCO2, and PvCO2.ResultsThe patients were all hemodynamically and respiratory stable during anaesthesia. End-tidal carbon dioxide values were corresponding to venous gases during BVM ventilation under optimal conditions. The bias, the mean of the differences between the two methods (device versus venous blood gases), for time points 1-4 ranges from -1.37 to -1.62.ConclusionThe portable device, EMMA™ is suitable for determining carbon dioxide in expired air (kPa) as compared to simultaneous samples of PvCO2. It could therefore, be a supportive tool to asses the BVM ventilation in the demanding prehospital and emergency setting.

Highlights

  • For healthcare providers in the prehospital setting, bag-valve mask (BVM) ventilation could be as efficacious and safe as endotracheal intubation

  • The aim of this study was to investigate whether a new portable device attached to a ventilation mask can give end- tidal carbon dioxide (ETCO2) values corresponding to carbon dioxide measurements from venous blood gases (PvCO2)

  • The procedure was as follows: The patients were brought to the operating room where venous cannulas for sampling of blood were inserted antecubitally. They were monitored by ECG, pulsoxymetry, non invasive blood pressure (AISYS, Datex Ohmeda, WI, USA) and capnography built with mainstream technology (EMMATM Emergency Capnometer, PHASEIN AB, Danderyd, Sweden) attached to a bag-valve apparatus

Read more

Summary

Introduction

For healthcare providers in the prehospital setting, bag-valve mask (BVM) ventilation could be as efficacious and safe as endotracheal intubation. To facilitate the evaluation of efficacious ventilation, capnographs have been further developed into small and convenient devices able to provide end- tidal carbon dioxide (ETCO2). The aim of this study was to investigate whether a new portable device (EMMATM) attached to a ventilation mask would provide ETCO2 values accurate enough to confirm proper BVM ventilation. Bag-valve mask (BVM) ventilation should be the preferred technique as it is as efficacious and safe, if healthcare providers are unexperienced [1,3,4,6]. BVM, is dependent on provider technique and to facilitate the evaluation of this it could be beneficial to use a small capnography device (EMMATM)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call