Abstract

This study explores the transition of shear force spectral fingerprints during tantalum (Ta) and/or tantalum nitride (TaN) chemical mechanical planarization on patterned wafers using a polisher and tribometer that has the unique ability to measure shear force and down force in real-time. Fast Fourier Transformation is performed to convert the raw force data from time domain to frequency domain and to illustrate the amplitude distribution of shear force and down force. Results show that coefficient of friction, variance of shear force and variance of down force increase during polishing when the Ta/TaN layer is removed thus exposing the inter-layer dielectric layer. Unique and consistent spectral fingerprints are generated from shear force data showing significant changes in several fundamental peaks before, during and after Ta/TaN clearing. Results show that a combination of unique spectral fingerprinting, coefficient of friction and analysis of force variance can be used to monitor in real-time the polishing progress during Ta/TaN chemical mechanical planarization for optimal polishing time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.