Abstract
A major challenge in developing recyclable polymeric materials is the inherent conflict between the properties required during and after their life span. In particular, materials must be strong and durable when in use, but undergo complete and rapid degradation, ideally under mild conditions, as they approach the end of their life span. We report a mechanism for degrading polymers called cyclization-triggered chain cleavage (CATCH cleavage) that achieves this duality. CATCH cleavage features a simple glycerol-based acyclic acetal unit as a kinetic and thermodynamic trap for gated chain shattering. Thus, an organic acid induces transient chain breaks with oxocarbenium ion formation and subsequent intramolecular cyclization to fully depolymerize the polymer backbone at room temperature. With minimal chemical modification, the resulting degradation products from a polyurethane elastomer can be repurposed into strong adhesives and photochromic coatings, demonstrating the potential for upcycling. The CATCH cleavage strategy for low-energy input breakdown and subsequent upcycling may be generalizable to a broader range of synthetic polymers and their end-of-life waste streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.