Abstract

This paper describes a design process for an end mill. A solid model of the designed cutter is constructed together with the computation of the cutter’s geometry, wheel geometry, and wheel positioning data for fabricating end mills with the required cutter geometry. The main idea of the process is to use the cutting simulation method to obtain the machined shape of an end mill by using Boolean operations between a given grinding wheel and a cylindrical workpiece (raw stock). The major design parameters of a cutter, such as rake angle and inner radius, can be verified by interrogating the section profile of its solid model. This study investigates the relationship between various dimensional parameters and proposes an iterative approach to obtain the required geometry of a grinding wheel and cutter location (CL) data for machining an end mill that satisfies the design parameters. This research was implemented using a commercial computer aided design (CAD) system with API function programming and is currently used by a commercial tool maker in Korea. It can eliminate the need to produce a physical prototype during the design stage and can be used in virtual cutting tests and analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call