Abstract

The Eastern Mediterranean Sea is a sink for terrigenous sediments from North Africa, Europe and Asia Minor. Its sediments therefore provide valuable information on the climate dynamics in the source areas and the associated transport processes. We present a high-resolution dataset of sediment core M40/4_SL71, which was collected SW of Crete and spans the last ca. 180 kyr. We analysed the clay mineral composition, the grain size distribution within the silt fraction, and the abundance of major and trace elements. We tested the potential of end-member modelling on these sedimentological datasets as a tool for reconstructing the climate variability in the source regions and the associated detrital input. For each dataset, we modelled three end members. All end members were assigned to a specific provenance and sedimentary process. In total, three end members were related to the Saharan dust input, and five were related to the fluvial sediment input. One end member was strongly associated with the sapropel layers. The Saharan dust end members of the grain size and clay mineral datasets generally suggest enhanced dust export into the Eastern Mediterranean Sea during the dry phases with short-term increases during Heinrich events. During the African Humid Periods, dust export was reduced but may not have completely ceased. The loading patterns of two fluvial end members show a strong relationship with the Northern Hemisphere insolation, and all fluvial end members document enhanced input during the African Humid Periods. The sapropel end member most likely reflects the fixation of redox-sensitive elements within the anoxic sapropel layers. Our results exemplify that end-member modelling is a valuable tool for interpreting extensive and multidisciplinary datasets.

Highlights

  • The Eastern Mediterranean Sea is a semi-enclosed ocean basin between Africa, Asia and Europe (Fig 1, redrafted after [1])

  • The core was previously used in various studies focusing on past alkenone and stable isotope sea surface temperatures and salinities [34], basin-wide water mass circulation and sediment provenance using Nd- and Sr-isotopes [5,6], and the dynamics of dust input into the Eastern Mediterranean Sea using clay minerals [29]

  • Clay mineral EM1 is dominated by kaolinite (41%), palygorskite (18%) and illite (25%)

Read more

Summary

Introduction

The Eastern Mediterranean Sea is a semi-enclosed ocean basin between Africa, Asia and Europe (Fig 1, redrafted after [1]) This basin is situated between the warm and dry climate of northern Africa to the south and the temperate and humid climate of Europe to the north. Data of the grain size, clay mineral, geochemical and isotopic compositions have been widely used to reconstruct the provenance and transport processes for the Eastern Mediterranean Sea sediments. This information can be further used to decipher the archived climatic signals [4,5,6,7,8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.